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Oligonucleotides equipped with EDTA-Fe can bind specificaily to duplex DNA by
triple-helix formation and produce double-strand cleavage at binding sites greater than
12 base pairs in size. To demonstrate that oligonucleotide-directed triple-helix
formation is a viable chemical approach for the site-specific cleavage of large genomic
DNA, an oligonucleotide with EDTA-Fe at the 5' and 3' ends was targeted to a 20-
base pair sequence in the 340-kilobase pair chromosome III of Saccharomyces
cerevisiae. Double-strand cleavage products of the correct size and location were
observed, indicating that the oligonucleotide bound and cleaved the target site among
almost 14 megabase pairs of DNA. Because oligonucleotide-directed triple-helix
formation has the potential to be a general solution for DNA recognition, this result
has implications for physical mapping of chromosomes.

T ECHNIQUES FOR THE SITE-SPECIFIC

cleavage of double-stranded DNA
are vital to chromosomal mapping,

gene isolation, and DNA sequencing (1, 2).
Restriction endonucleases with 4- to 6-
base pair (bp) binding sites cleave too fre-
quently for many chromosomal DNA ma-
nipulations (3). Rare-cutting restriction en-
zymes with 8-bp specificities have found
widespread use in genetic mapping; howev-
er, these enzymes are few in number, are
limited to the recognition of CpG-rich se-
quences, and cleave at sites that tend to be
highly clustered (4). Combinations ofmeth-
ylases and restriction enzymes that require
methylated sequences can produce cleavage
specificities of 8 to 12 bp (5). Transient
methylase protection can be induced by
DNA binding proteins that recognize se-
quences with overlapping restriction-meth-
ylation sites; restriction enzyme digestion
then produces specific cleavage at the pro-
tein binding site (6). Recently, endonucle-
ases encoded by group I introns have been
discovered that might have greater than 12
bp specificity (7). Unfortunately, none of
these strategies can be generalized to recog-
nize and cleave at any ofthe large number of
unique sequences contained in human
DNA.

Pyrimidine oligonucleotides bind specifi-
cally to purine sequences in duplex DNA to
form a local triple-helix structure (8-12).
The oligonucleotide binds in the major
groove parallel to the Watson-Crick purine
strand by Hoogsteen hydrogen bonding (8-
12). Triple-helix specificity is derived from
thymine (T) binding to adenine-thymine
base pairs (T-AT base triplet) and protonat-
ed cytosine (C+) binding to guanine-cyto-
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sine base pairs (C + GC base triplet) (8-15).
Guanine recognition of thymine-adenine
base pairs (G-TA base triplet) within the
pyrimidine triple-helix motif (9) and recog-
nition of (purine)n(pyrimidine)m type se-
quences by alternate strand triple-helix for-
mation (10) have extended recognition of
duplex DNA to a wide class of mixed pu-
rine-pyrimidine sequences (16). Oligonucle-
otides 15 to 20 bases in length equipped
with an EDTA-Fe moiety produce se-
quence-specific double-strand breaks with
efficiencies ranging from 5 to 25% at their
target sites within genomes as large as that
of bacteriophage X (48.5 kbp) (8-10). In
order to determine if this specificity can be
achieved in chromosomal DNA, a triple-
helix target site, 5'-A2GA4GA2GA3GA5-3',
was inserted proximal to the LEU2 gene on
the short arm ofthe 340-kb chromosome III
of Saccharomyces cerevisiae (17-25) by ho-
mologous recombination (Fig. 1). The ge-

Triplex site

5'-TCGACCCGGAAGAAAAGAAGAAAGAAAAAGGATCCG
cGGccrrCr1TrTCP I CIrTCCTAGGCAGCr-5

Pst I
Xma (Xho I) Kpn I

Eco RI
LEU2

pUCLEU2B

Pst I

Fig. 1. Schematic diagram of pUCLEU2B con-
structed by insertion of the Pst I-Xma I 4.0-kb
LEU2 fragment from YEpl3 into pUCl9 by
standard procedures (19). Complementary oligo-
nucleotides containing a homopurine sequence
were ligated into the unique Xho I site, upstream
of the LEU2 gene.

netic map location of the LEU2 locus indi-
cates that double-strand cleavage at the 20-
bp target site should produce two frag-
ments, approximately 110 ± 10 and 230 ±
10 kb in size (26) (Fig. 2). We report the
site-specific cleavage at this genetically engi-
neered sequence on chromosome III by an
oligonucleotide-(EDTA-Fe)2.
A 20-base pyrimidine oligonucleotide, 5'-

T*TCI4CI2CT3CT4T*-3', with thymidine
EDTA (T*) (27) at the 5' and 3' termini,
was synthesized by automated methods be-
ginning with 5'-o-DMT-thymidine-EDTA-
triethylester 3'-succinyl control pore glass as
the solid support (DMT, 4,4'-dimethoxytri-
tyl). Cleavage reactions were performed on
yeast transformants SEY6210 (- target
site) and SEY6210B (+ target site) (28).
Chromosomal DNA embedded in an agar-
ose plug was equilibrated with oligonucleo-
tide-(EDTA-Fe)2 to facilitate diffusion into
the agarose and triple-helix formation (pH
7.2, 22°C). The cleavage reaction was initi-
ated by addition of dithiothreitol (DTT).
To improve the cleavage yield, a second
cleavage cycle was performed by disrupting
the triplex at conditions of high pH (8.5),
reequilibrating the plug in a triplex-compat-
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Fig. 2. (Left) Genetic map of S. cerevisiae strain
SEY6210B (+ target site) chromosome Ill. The
locations ofHIS4, PGKI, LEU2 loci (boxes), the
centromere (circle), and the triple-helix target site
are indicated. The sizes of the cleavage products
(based upon genetic map distances and experi-
mental results) are shown. (Right) Schematic
diagram of the triple-helix complex. The pyrinii-
dine oligonucleotide with EDTA'Fe at the 5' and
3' termini is bound in the major groove parallel to
the purine strand.
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ible buffer, and repeating the reaction with
fresh reagents. The chromosomes were sepa-
rated by pulsed-field gel electrophoresis and
detected by ethidium bromide staining (Fig.
3, A and B). Cleavage products were detect-
ed by DNA blotting with chromosome III-
specific probes (Fig. 3, C and D).
The HIS4 (29) and PGK1 (30) genes are

located on the short and long arms of chro-
mosome III, respectively (Fig. 2). DNA
hybridization of the resolved cleavage prod-
ucts (Fig. 3A) with a radiolabeled HIS4
probe revealed a 110 + 10 kb fragment
present only in the yeast strain containing
the engineered target site (SEY621OB) (Fig.
3C, lanes 3 and 4). Hybridization with a
radiolabeled PGK1 probe revealed a second
unique fragment 230 + 10 kb in size (Fig.
3D, lanes 3 and 4). The extent of double-
strand cleavage at the target site was estimat-
ed at 6% by densitometry. The observed
fragment sizes are consistent with those
estimated from the genetic map (26). Thus,
after searching through almost 14 megabase
pairs of yeast DNA, the oligonucleotide

A
+ _ +
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-4.-_ +
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bound and cleaved specifically at the 20-bp
target site while leaving the other chromo-
somes largely intact (Fig. 3B).
The sequence specificity of pyrimidine

oligonucleotides for local triple-helix forma-
tion on duplex DNA is dependent upon pH,
temperature, and organic cosolvents (8).
Under conditions of lower pH, lower tem-
perature, or added ethanol, oligonucleotides
have been observed to bind to sites that are
in significant but not perfect match with the
target-site sequence (8). Because the com-
plete sequence ofthe yeast genome is not yet
available, the location and number of sec-
ondary binding sites on chromosome III
could not be predicted a priori. Interesting-
ly, one major (300 ± 10 kb) and three
minor (190, 210, and 240 + 10 kb) second-
ary cleavage fragments were detected on
chromosome III at pH 7.2 (Fig. 3, C and D,
lanes 3 and 4) (31). The appearance of the
three minor fragments (190, 210, and 240
kb) upon hybridization with the flanking
markers HIS4 and PGKI indicates that the
minor secondary cleavage sites are found on
the long arm of chromosome III, distal to
the engineered target site. The major sec-
ondary cleavage site (300 kb) was not
flanked by the markers, but must map to
within 40 kb of a chromosome III telomere.
The extent of sequence similarity of the

secondary sites to the target site can be
estimated by examining the cleavage pattern
as a function of increasing pH. The cleavage
products were examined over the pH range
7.2 to 7.8 (Fig. 3E). The 190- and 210-kb
bands were not observed above pH 7.4

Fig. 3. Site-specific cleavage of yeast chromo-
somes. Lanes 1 and 2 (all gels): SEY6210 (- tar-
get site) and SEY6210B (+ target site) chromo-
somal DNA unreacted controls, respectively.
Lanes 3 and 4 (all gels): SEY6210 and
SEY6210B chromosomal DNA, respectively, af-
ter reaction with oligonucleotide-(EDTA*Fe)2.
(A) Separation of yeast chromosomes less than
400 kb in size by pulsed-field gel electrophoresis
on a Bio-Rad CHEF system. Pulse times were
ramped from 10 to 20 s during a 24-hour period
(14°C and 200 V). Chromosomal DNA was
detected by ethidium bromide staining. Fragment
sizes were estimated by comparison to bacteri-
ophage A concatemers. (B) Separation of all yeast
chromosomes with tentative assignments. A 60-s
pulse time for 16 hours was followed by 90-s
pulses for 8 hours (14°C, 200 V). Sizes were
estimated by comparison to YNN295 chromo-
somal DNA (24). (C) DNA blot hybridization of
reactions shown in (A) with a 250-bp HIS4
fragment labeled with 2P by random priming
(19). The DNA blot transfer and hybridization
were performed by standard procedures (19). The
cleavage products were visualized by autoradiog-
raphy and quantitated by laser densitometry. (D)
DNA blot hybridization as in (C) except a 1.3-kb
marker from the promoter region of PGK1 was
used for hybridization (E). pH profile of cleavage
products hybridized with PGKI marker.

(lanes 7 to 10), whereas raising the pH
above 7.6 eliminated the 240-kb fragment
(lanes 9 and 10). The 300-kb band and the
fragment corresponding to the designed tar-
get site were still observed at pH 7.8 (lanes 9
and 10) though at lower cleavage efficien-
cies. This suggests that the order of se-
quence similarity of the different sites with
the target site are 300 > 240 > 210, 190
kb.
A chemical approach for the site-specific

cleavage of intact chromosomes at 12- to
20-bp sequences might assist the large effort
being directed toward mapping genomic
DNA. For an unambiguous test of site-
specific cleavage on chromosomal DNA by
oligonucleotide-directed triple-helix forma-
tion, a target site of known sequence and
approximate physical location was chosen
for this experiment. However, the ability of
oligonucleotide-directed triple-helix forma-
tion to recognize a wide variety of purine
and mixed purine-pyrimidine sequences (16)
could allow the orchestrated cleavage of
large genomic DNA at any genetic marker
for which some sequence information is
known.
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